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We consider a NTW of three fixed bed reactors forced with two different switch 
strategies characterized by different feed/discharge permutations. We show that 
different forcing strategies induce very different stability ranges of the T-periodic 
regimes in the NTW. This is demonstrated both by bifurcation analysis, and by 
comparing the related spatio-temporal patterns generated by the two strategies. The 
bifurcation analysis is carried out choosing as bifurcation parameter the switch time. 
The stability limits are then compared with those predicted by the criterium proposed by 
Sheintuch and Nekhamkina (2005). 
 
1. Introduction 
Several studies have shown that many irreversible exothermic catalytic processes can be 
efficiently carried out in periodically-forced fixed-bed reactors. The reverse flow reactor 
(RFR) (Matros, 1989)  is by far the most extensively studied periodically-forced reactor.  
In the RFRs the flow inversion traps the reaction heat in the central part of the reactor, 
the edges remaining colder. In optimal conditions, after an initial transient, a bell shaped 
temperature profile is attained, and cold and very lean mixtures can be conveniently 
processed. The main shortcoming of RFRs is the loss of reactants immediately upon 
flow reversal: the so-called washout effect. Matros (1989) has explored several other 
reactor configurations aimed at trapping reaction heat inside the catalytic bed and 
avoiding washout. One proposed configuration is a network (NTW) of two or three 
reactors with feed and discharge positions periodically shifted in time (Haynes and 
Caram 1994; Brinkmann et al. 1999). In a NTW, the heat front propagates in a virtually 
closed cycle while keeping constant the flow direction in each reactor. From the 
theoretical point of view, Sheintuch and Nekhamkina (2005) analyzed a NTW 
consisting of an arbitrary number of reactors, and showed that its performance converge 
to that of a continuum loop reactor as the number of reactors is increased.  
When the NTW consists of fixed-bed reactors, the periodic forcing generates 
spatio-temporal patterns that are strictly related to the spatio-temporal symmetry of the 
system (Russo et al. 2006; Altimari et al. 2006). Indeed, it was demonstrated that 
periodic forcing of a NTW of identical reactors determines specific spatio temporal 
symmetries (Russo et al. 2002) which do not depend on the specific model used to 
describe the reactor. It was also shown that the symmetry properties of the system have 
substantial effects on the bifurcation behavior of the NTW. 



In the present paper we consider a NTW of three fixed bed reactors forced with two 
different switch strategies characterized by different feed/discharge permutations. The 
analysis is aimed at evaluating how the switch strategy affects the NTW stability 
through simulations and bifurcation analysis. The first strategy, which was already 
considered in the literature, consists into changing at each switch time the 
feed/discharge positions so that the first reactor of the NTW is moved to the last place, 
whereas with the second strategy the last reactor is periodically moved to the first place 
of the NTW sequence. 
 
2. Mathematical model equations and switch strategies  
Two different switch strategies as sketched in Fig.1 are studied. In both cases the 
sequence of reactors is changed periodically following a cyclic permutation.  

 
Figure1. The three catalytic reactors with two different strategies of permutation of the 
feed and discharge positions. 
 
We consider a first order exothermic reaction occurring in a fixed catalytic reactor. Each 
fixed-bed reactor is modeled as a heterogeneous system with heat and mass transfer 
resistance between the gas and the solid phase, axial dispersion in the gas phase, axial 
heat conduction in the solid phase, and cooling at the reactor wall.  
The mathematical model (Russo et al. 2006) for the NTW reads: 
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In Eq.(1) the first two equations represent the mass balance in gas phase and in the solid 
phase, respectively. The third and the fourth equations are the heat balance in gas phase 
and in the solid phase, respectively. The index i identifies the reactor. The definition of 
all dimensionless state variables and parameters are the same of Russo et al. (2006).  
The forcing enters the model through the boundary conditions, which hence 
differentiate the two strategies. The forcing is implemented with a discontinuous 
periodic wave function f(t) given by: 
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Thus, the boundary conditions reads: 
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Where the sign – should be used for the strategy-1 and + for the strategy-2. 
It is worth remarking that the NTW mathematical model is a discontinuous periodically 
forced system with a minimal period T=3τ for both switching strategies. 
 
3. Effect of the switch strategies  
The effect of the switch strategy on the dynamic behavior of the NTW has been studied 
through spatio-temporal patterns and bifurcation analysis in the case of T-periodic 
regimes. The switch time is chosen as bifurcation parameter. Bifurcation analysis is 
carried out with a continuation algorithm that allows the construction of solution 
diagrams representing the locus of T-periodic regime solution. We implemented this 
procedure as described in details by Russo et al. (2002); this technique exploits 
symmetry properties (induced by the periodic forcing) of the model. Stability ranges of 
ignited T-periodic regimes and their bifurcations are thoroughly analyzed as the switch 
time is varied for both switching strategies. In such a way, ignition/extinction ranges of 
the forced network are efficiently detected. 
 
 



3.1 Effect of the switch strategy on the spatio-temporal patterns. 
The occurrence of temperature and conversion waves traveling along the NTW appears 
as T-periodic regimes.  
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Figure 2. Spatio-temporal grey-scale patterns of the gas phase temperature. Left:  
strategy-1,Tin=60, τ=2500; Right: strategy-2, Tin=60 C, τ=5000. Each box corresponds 
to a reactor unit.  
 
For both strategies, examples of traveling temperature waves are given by the 
spatio-temporal pattern reported in Fig. 2, where each panel represents a single reactor. 
The temperature level is grey coded, and the non-dimensional axial coordinate is 
reported in abscissa. The scaled time (t/τ) is in ordinate. For the sake of clarity, only two 
temperature levels are considered: light grey represents points with T>500C, and dark 
grey T<500C. For the strategy-1, it is then apparent the path of the temperature 
traveling wave through the NTW: the temperature front forms in the first reactor, and 
then moves along axially; after the first switch a new front forms and moves along the 
second reactor; then after the second switch the same happens in the third reactor. It is 
evident that the spatio-temporal patterns (Fig. 2-left) in any of the three reactor is equal 
to the spatio-temporal pattern in the successive (according the flow direction) reactor 
but shifted forward in time of τ. This feature is the manifestation of the spatio-temporal 
symmetry of the system (Russo et al. 2002).The differences in the spatio-temporal 
symmetries induced by the two forcing strategies are readily evident from the 
comparison of the spatio-temporal patterns of the T-periodic regime (Figs. 2). The 
situation for the strategy-2 (Fig.2-right) shows that the spatio temporal pattern in any of 
the three reactors is equal to the spatio-temporal pattern in the preceding (according the 
flow direction) reactor but shifted forward in time of τ.  
 
3.2 Bifurcation analysis: The influence of the switch time τ. 
Figure 3 shows solution diagrams for both strategies with the switch time as the 
bifurcation parameter. In these solution diagrams the locus of T-periodic regimes is 
shown. Stable solutions are represented with solid lines, and unstable solutions are 
plotted with dashed lines. The feed temperature value is 60 C. It should be remarked 
that at this feed temperature value the unforced system does not exhibit any stable 
ignited regime.  
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Figure 3. The symmetric T-periodic solution diagram with the switch time, τ, as 
bifurcation parameter at Tin=60 C. Left: strategy-1. Right: strategy-2. The solution is 
reported with the gas temperature at the network exit, Tg,out C. Solid lines: stable 
T-periodic regimes; dashed lines: unstable T-periodic regimes. 
 
For both strategies, a nonignited T-periodic regime is present throughout the 
investigated switch time range (the horizontal line on the bottom of Figs. 3). The ignited 
(high conversion) solutions form an isola bounded by two catastrophic saddle node 
bifurcation points:  S1 (at τ=1386) and S2 (at τ=3950) for strategy-1 and S’1 (at τ=2810) 
and S’2 (at τ=7900) for strategy-2. When the switch time is increased above τS2 (or τS’2), 
forcing is not able to sustain auto thermal operation anymore, and, correspondingly, no 
high conversion solution is found. Conversely, for switch times lower than τS1 (or τS’1), 
T-periodic ignited solutions disappear but the system still possesses ignited solution 
until τ approaches to zero, which are stable multi-periodic, quasi-periodic and chaotic 
regimes. Those solutions can be detected via numerical simulation. A detailed 
description of the bifurcations occurring in this switch time range is beyond the scope of 
this work (Russo et al. 2006). For the strategy-2, the stable high conversion T-periodic 
regimes on the isola become unstable at τ=2870 through a Neimark-Sacker bifurcation 
N-S. This bifurcation is supercritical, and leads to the onset of stable symmetric 
quasi-periodic regimes. It is important to note the switch time value at which the 
Neimark-Sacker occurs is very close to the switch time value at which the saddle-node 
bifurcation S’1 occurs. The saddle-node bifurcation S’2 is catastrophic whereas S’1 is 
not. The most important difference of the solutions diagrams shown in Fig3. is the 
significantly larger stability range of T-periodic ignited solutions for the strategy-2 with 
respect to that predicted for strategy-1. In particular, the switch time range (τ∈[2810; 
7900]) where stategy-2 exhibits stable traveling waves is almost doubled with respect to 
that found for strategy 1 (τ∈[1386, 3950]). This fact seems to suggest that an intelligent 
choice of the switch strategy can overcome the stability limitations of NTW reported in 
the literature. A physical interpretation of these limits is possible making use of the 
analytic criteria of Sheintuch and Nekhamkina (2005), who proposed and tested these 
criteria for a NTW of adiabatic reactors treated with a pseudo-homogeneous model. 
These criteria define the range of existence of traveling waves, and are based on the 
comparison of the thermal and reaction front velocity with the switch velocity, that is, 



the velocity of the feed position movement. The range of existence of T-periodic ignited 
solution is defined by the following inequalities: 
 

fr sw thV V V≤ ≤         (4) 
       
where Vth, the velocity of a thermal front in absence of reaction, Vfr the velocity of a 
reaction front that represents the velocity at which the reaction section moves along the 
reactor and Vsw is the switch velocity. Vth and Vfr are slightly affected by the switch 
strategy, as they mainly depend on the heat capacities of solid and gas, on the gas 
velocity, on the adiabatic temperature rise, and on the inlet temperature. On the 
contrary, the switch velocity does depend on the switch strategy, as swV n τ=  , where n 
is the number of the reactor units jumped upon switching (in the flow direction) by the 
feed position. It can be easily noted that the value of n is 1 in the case of strategy 1, and 
2 in the case of strategy-2. Thus the Eq.4 explains the doubling of the stability limits of 
the stategy-2 respect to the strategy-1. 
 
Conclusions  
 
We analyzed and compared the spatio-temporal patterns and the stability of T-periodic 
regimes of a network of three nonadiabatic catalytic fixed bed subjected to two different 
periodic switch strategies: one in which after one switch time the first reactor of the 
sequence is moved at the last place and the other in which after one switch time the last 
reactor of the sequence is moved at the first place. For both strategies, the switch time 
ranges of T-periodic regimes are delimited by saddle node bifurcations. Consistently 
with the theoretical predictions of Sheintuch and Nekhamkina (2005), obtained in 
adiabatic conditions, the bifurcation switch time values of the strategy-2 are doubled 
with respect to the strategy-1. This fact show that the switch strategy can be used to 
enlarge the narrow stability ranges of NTW.  
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